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ABSTRACT 

In January and February of 2017, California experienced multiple heavy storms that 

caused serious destruction of facilities and economic loss, although it also helped to reduce water 

storage deficit due to prolonged drought in previous years. These extreme precipitation events 

were mainly associated with Atmospheric Rivers (ARs) and brought about 174 km3 of water to 

California according to ground observations. This paper evaluates the performance of six 

commonly used satellite-based precipitation products (IMERG, 3B42RT, PERSIANN, CCS, 

CMORPH, and GSMaP), as well as ground-based radar products (Radar-only and Radar-lgc) in 

capturing the ARs precipitation rate and distribution. It is found that precipitation maps from all 

products present heavy precipitation in January and February, with more consistent observations 

over ocean than land. Though large uncertainties exist in quantitative precipitation estimation 

(QPE) over land, the ensemble mean of different remote sensing precipitation products over 

California is consistent with gauge measurements. Among the six satellite-based products, 

IMERG correlates the best with gauge observations both in the detection and quantification of 

precipitation, but it is not the best product in terms of root mean square error (RMSE) or bias. 

Compared to satellite products, ground weather radar shows better precipitation detectability and 

estimation skill. However, neither radar nor satellite QPE products have good performances in 

quantifying the peak precipitation intensity during the extreme events, suggesting that further 

advancement in quantification of extremely intense precipitation associated with AR in the 

Western United States is needed. 

KEYWORDS: Atmospheric River, QPE, water resources, remote sensing, satellite, ground 

weather radar, extreme events 
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Remote Sensing of 2017 California Atmospheric River Precipitation 

1. Introduction 

In January and February of 2017, excessive precipitation with local amounts exceeding 

1000 mm, fell in Pacific coast and Western United States. The extreme precipitation alleviated 

ongoing drought conditions in California, but also produced catastrophic flooding and landslides 

in the Bay Area, wrecked Oroville Dam’s spillway, and closed Interstate 80 in the Sierra Nevada 

under record-breaking blizzards (Taylor, 2017). These extreme precipitation events were 

predominantly fueled by long and narrow channels of large integrated water vapor transport 

commonly referred to as Atmospheric Rivers (ARs) (Zhu and Newell, 1994; Ralph et al., 2006). 

ARs generally start from mid-latitude oceanic regions, but it can stall as they move 

onshore, leading to prolonged rainfall and flooding. While ARs occur globally, their impacts are 

most significant when they make landfall and interact with the topography (Gimeno et al. 2014). 

A number of studies have examined the importance of ARs in producing flooding in California 

and other western states (e.g., Ralph et al., 2004, 2006). It is concluded that ARs, combined with 

orographic enhancement and intense wind are key factors determining the extent of heavy rain 

and flood (Ralph et al., 2003; Waliser et al., 2017). In addition, Neiman et al. (2008) used a 

combination of satellite and ground based data and showed that, at least in California, ARs 

produce twice as much precipitation as all other storms. Guan et al. (2010, 2013) cited about 40% 

of the annual snow accumulation in California’s Sierra Nevada was during ARs over the period 

of water years 2004-2010. Therefore, accurate measurement of extreme precipitation associated 

with ARs at a range of spatial and temporal resolutions is invaluable for a variety of scientific 

applications, ranging from real-time flood forecast to the evaluation of regional application of 

weather and water models. 
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For such large-scale atmospheric systems, only remote sensors can provide good 

coverage of comprehensive precipitation observations at relatively high spatiotemporal 

resolution. Over ocean, and before ARs make landfall, satellite can be used to retrieve 

precipitation associated with AR systems. After ARs move onshore, ground weather radar 

network provides intensive observations of ARs. However, accurate measurement of 

precipitation from ARs over western U.S. remains challenging due to complex precipitation 

microphysics caused by land-ocean interaction in the coastal zone and complex terrains in the 

mountainous region. First, the lower tropospheric air temperature during AR is warmer than 

other winter storms. In addition, once such systems make landfall over the mountainous west, 

they generate substantial orographic precipitation. Moreover, a large fraction of land surface in 

the western U.S. during AR in winter is snow or ice. These features make it difficult for 

spaceborne passive microwave (PMW) or infrared (IR) sensors, or even the active ground-based 

radars to estimate precipitation. IR-based techniques are indirect and incline to underestimate 

heavy precipitation from shallow clouds and false detect precipitation over ice and snow surface 

(Kidd et al., 2003; Behrangi et al., 2009). PMW-based retrieval has better physics than IR 

method. At low frequency band, PMW sensors are able to sense the thermal emission of rain, 

whereas at higher frequency band the PMW sensors can detect scattering properties of ice 

particles in the precipitation layer and on tops of convective systems. However, PMW-based 

techniques also have difficulties in capturing warm rains (Neiman et al. 2005). In addition, the 

ice and snow surface adds more uncertainties to PMW-based precipitation retrievals. Ground 

weather radar dramatically increases the ability of observing precipitation in high space and time 

resolutions through measuring reflectivity from reflected precipitation echoes. The ice and snow 

surface does not affect radar precipitation measurements. Despite these advances, reliable ground 
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radar based precipitation measurements are difficult to obtain over mountainous regions, due to 

the uncertainties associated with empirical � − � relations and inadequate coverage induced by 

terrain blockages (Maddox et al. 2002; Willie et al. 2017). In order to quantify the uncertainties 

in observing AR extreme precipitations, the gauge measurements, which are relatively dense 

over the U.S., can be used to assess the weaknesses and strengths of various space and ground 

radar quantitative precipitation estimation (QPE) products. The insights gained from these 

analyses can help algorithm developers design more robust retrieval methods. Furthermore, it 

can provide users with a better quantitative understanding of the range of uncertainties that the 

current remote sensing products offer. While the outcome of the present study over the Western 

US may not be directly transferable to many other regions of the world, it can provide an overall 

insight on the range of uncertainties that one may expect over similar conditions. 

Behrangi et al. (2016) investigated a broader set of ARs over western United States using 

various space-based precipitation products. The objective of this paper is to assess the 

performance of several popular multi-satellite precipitation products and ground radar network 

precipitation products in capturing extreme precipitation brought by ARs in January and 

February 2017 at finer temporal resolution (3-hourly scale). This study was inspired by Behrangi 

et al. (2016) and also motivated by a series of natural disaster related events (e.g., the epic 2017 

California floods and mudslides) caused by excessive precipitation brought by ARs. Accurate 

estimation of rainfall during such extreme events is critical for California water resource 

management and flood protection (Cifelli et al. 2017). This study is also motivated by the recent 

development of satellite based precipitation retrievals. Two new products included in this study, 

namely, IMERG and GSMaP are probably the two most used products in the GPM era. Hence, 

we take this opportunity to explore if the current remote sensing technology would have 
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102 improved the  near-real-time QPE in challenging circumstances  (i.e., extreme  events  over 

complex terrain, coastal  region, complex cloud microphysics  processes, and cold season when 

snowfall  and snow  on the  surface  add other dimensions  to the  listed challenges). The  remainder 

of this  paper is  organized as  follows.  In section 2 we  describe  the  datasets  used in the  study. 

Section 3 presents  differences  among different  remote  sensing precipitation products. Section 4  

investigates  the  performance  of various  precipitation  products  focusing on one  extreme  event, 

and the paper is concluded in Section 5.   

2.  Precipitation dataset, study area and methods    

In this  study, AR events  were  first  defined by the  Integrated Water Vapor (IWV) from  

NASA  Modern-Era  Retrospective  Analysis  for Research Application, version 2 (MERRA-2)  

(Gelaro et  al., 2017)  greater than 20mm.  Consequently,  all  precipitation occurring in this  area  in 

January and February of 2017.  

a. Satellite Products  

A  number of multi-satellite  precipitation products  have  been developed and available  to 

the  public, such as  1) Integrated Multi-satellitE  Retrievals  for Global  Precipitation Measurement  

(IMERG)  (Huffman and Bolvin, 2015;  Huffman et  al, 2016),  2) the  Tropical  Rainfall  Measuring 

Mission (TRMM) Multisatellite  Precipitation Analysis  (TMPA) 3B42 real-time, version 7 

(3B42RT;  Huffman et  al. 2007), 3) Precipitation Estimation from  Remotely Sensed Information 

using Artificial  Neural  Networks  (PERSIANN) (Sorooshian et  al., 2000), 4) PERSIANN-Cloud 

Classification System  (CCS) (Hong et  al., 2004), 5) CPC MORPHing technique  (CMORPH) 

(Joyce  et  al., 2004;  Xie  et  al., 2017), and 6) Global  Satellite  Mapping of Precipitation (GSMaP) 

(Kubota  et  al., 2007). All  these  products  provide  near-real-time  (NRT) precipitation estimates  
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adjustment. PRT products are more accurate than NRT products in most cases (e.g., Behrangi et 

al., 2011), but the latency of PRT products generally is up to months. For real-time flood 

warning operations, NRT is the only choice to provide timely information. Therefore, it is 

important to understand how well NRT products can capture the rainstorms in January and 

February of 2017 in California. 

The IMERG Late run product is designed to combine data from all satellites in the Global 

Precipitation Measurement (GPM) constellation. The new version V04A of IMERG Late run is 

used in this paper. TRMM 3B42RT combines various PMW-derived precipitation estimates with 

PMW-calibrated IR-based estimates, and relies on climatology for bias adjustment. GSMaP 

takes advantage of precipitation retrievals from TRMM and other low Earth orbit satellites and 

interpolates them via spatial propagation information obtained from IR data. The PERSIANN 

and CCS derive precipitation purely from a single IR channel (~11 um). PERSIANN is a pixel-

based approach and PMW precipitation retrievals are used to update the parameters that relate IR 

to precipitation intensity, whereas CCS is a patch-based approach in which the relation between 

IR and precipitation rate is established for each class of cloud patches. CMORPH produces a 

temporally and spatially complete precipitation field by morphing the PMW precipitation data 

using motion vectors derived from geostationary satellite IR data. In another word, CMORPH 

uses precipitation estimates exclusively from PMW retrievals. The spatial and temporal 

resolution of different remote sensing precipitation products are summarized in Table 1. For the 

sake of evaluation, we mapped all the products onto common 0.25° ´ 0.25° spatial and 3-h 

temporal resolution grids in this study. For all products with original spatial resolution higher 

than 0.25° ´ 0.25°, the remapping was performed by averaging all fine resolution grids that fall 

inside the grid with coarser resolutions. The degradation of hourly products to 3-h temporal 
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148 resolution was  achieved by averaging all  the  times  steps  falling within the  coarser time  window. 

It  is  important  to note  that  satellite  and surface  instruments  measure  fundamentally different  

quantities. The  remote  sensing observations, the  TRMM  for example, measures  the  volume-

integrated MW  emission within the  instrument’s  instantaneous  field of view, while  the  gauge  

measurements  can only represent  one  location point. Interpolating to the  common grids  cannot  

solve the mismatch among different products with different resolutions.  

b. Multi-Radar/Multi-Sensor (MRMS) precipitation products   

MRMS  is  a  quantitative  precipitation estimation (QPE) system  integrating radar, rain 

gauge, and numerical  weather prediction data. It  generates  automated, seamless  national  3D  

radar mosaic  and multisensory precipitation estimates  (Zhang et  al. 2016). Currently, MRMS  

mainly produces  four types  of QPE  products:  1) radar-based QPE, 2) gauge-based QPE, 3) local  

gauge  bias-corrected radar QPE, and 4) gauge-and-precipitation-climatology-merged QPE. In  

this study, we used the first three QPE products since the last one is still under test.    

Radar-based  QPE  (hereafter referred to as  Radar-only)  is derived using different  

empirical  � − �  relationships  for different  surface  precipitation types, such as  warm  or cold 

stratiform  rain, convective  rain, tropical-stratiform  or tropical-convective  rain mix (Zhang et  al. 

2016).  Polarimetric  variables  are  not  used in the  operational  version because  various  polarimetric  

radar QPE  schemes  are  still  under evaluation across  CONUS. Radar QPE  provides  a  high-

resolution and rapid update  of spatial  precipitation distributions, but  also carries  uncertainties  in 

the  estimates  because  of imperfect  empirical  relationships  between radar reflectivity and 

precipitation rate, as  well  as  discrepancies  between radar measurements  aloft  and rainfall  near 

the  ground caused  by precipitation changes  in the  vertical. Radar QPE  is  challenging over this  
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study domain characterized by complex terrain, but it is commonly used to validate satellite 

precipitation products (e.g., Kirstetter et al. 2012). 

The gauge-only QPE (hereafter referred to Gauge) products archived in MRMS system 

are interpolated based on hourly rainfall records mainly from approximately 7,000 rain gauges 

from the Hydrometeorological Automated Data System (HADS; 

https://hads.ncep.noaa.gov/index.shtml). These gauge data are quality controlled through an 

automated scheme that compares each gauge report with collocated hourly radar QPE values. 

Gauge measurements outside a predefined range around the hourly radar QPE are filtered out as 

bad data. The quality-controlled gauge data are then interpolated onto MRMS 0.01° ´ 0.01° grid 

via an inverse-distance-weighting (IDW) scheme. In January and February over high elevation 

region, the phase of precipitation is mainly snow, which is unable to be measured by tipping-

bucket gauges. Fortunately, some HADS gauges installed in California are with antifreeze 

solution or with heater, which are capable of measuring frozen precipitation. 

The local gauge bias-corrected radar QPE (hereafter referred to Radar-lgc) adopts a bias 

correction method described in Ware (2015). First, the hourly rainfall differences between radar 

and gauges at each gauge station are interpolated onto MRMS grids via an IDW scheme. The 

interpolated difference field is then subtracted from the hourly radar QPE field. Generally, the 

local gauge bias correction provides consistent improvements over the radar-only QPE (Zhang et 

al., 2016). But a study presented by Willie et al (2017), who evaluated various MRMS products 

at different time scales over this region, showed that although radar rainfall performance would 

be enhanced after VPR and gauge correction, the improvement was not really significant. Note 

that the Radar-lgc product is not purely independent from Gauge product in this study. The 
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192 comparisons  between radar-only and gauge  adjusted products  can help understand the  

dependencies in the validation analysis.  

c. Study region  

The  study region (Fig. 1j) includes  the  Eastern North Pacific  Ocean before  AR landfall  

and mountainous  areas  with high elevations  that  can induce  orographic  enhancement.  ARs  can 

be  observed before, during, and after they make  landfall  and hit  mountainous  areas  with high 

elevations.  For comparison of different  precipitation products, precipitation total, intensity and 

distribution are  investigated both over ocean and over land. Over ocean, validation of satellite  

product  is  challenging due  to the  lack of in situ measurement, so cross  validation of satellite  QPE  

products  among themselves  is  conducted.  Over land, because  the  western United States  is  fairly 

well  instrumented  with rain gauges, the  evaluation of various  remote  sensors’ capability of 

observing extreme  precipitation  is  conducted in  a  smaller region (see  red box in Fig. 1j) in 

California  using  MRMS  gauge  QPE  product  as  reference.  This  area  was  selected because  1) it 

received the  largest  volume  of precipitation in early 2017 compared to other areas;  2) the  

excessive  precipitation had  significant  impacts  on the  State  of California, including catastrophic  

flooding and landslides, also alleviating drought conditions.  

d. Verification statistics  

Two major aspects  to address  for the  difference  between remote  sensing QPE  products  

and gauge  measurements  are  (1) the  capability to detect  precipitation and (2) the  accuracy in 

quantifying precipitation rate. Simple  contingency table  statistics  are  applied to answer the  first  

question. The  contingency table  statistics  describing the  probability of detection (POD), false  

alarm  ratio (FAR), and critical  success  index (CSI) are  used to evaluate  remote  sensing QPE  
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214 products. These  indexes  are  computed based on the  number of hits  (H), false  alarms  (F), and 

misses (M).  

POD = H/(H+M)                                                                    (1a)  

CSI = H/(H+F+M)                                                                 (1b)  

FAR = F/(H+F)                                                                      (1c)  

To answer the  second question, four statistical  indices  for evaluating remote  sensing QPE  

products  are  selected.  The  Relative  Bias  (RB)  is  used to assess  the  systematic  bias  of products. 

Spearman’s  rank correlation coefficient  (CC) is  used to assess  the  agreement  between remote  

sensing products  and gauge  observations. The  mean absolute  error (MAE) measures  the  average  

magnitude of the error while the root-mean-squared error (RMSE) weights more to larger errors.   

∑�� = 	  "($)& 	∑ (($)
  × 	100%,	∑ 

                                                    (2a)  
(($) 

& 
) 	 ∑*+,-.�� = 1 − 	 !(#)&+,-.%(#)/ ,                                             (2b)  

0(0&&1) 

∑| (	 $)��� = " &(($)|
  , ���                                                           (2c)  

0 

∑( ( ) )&���� = "
 	4 $ &(($)                                                              (2d)  

0 

Here, �(�)  and �(�)  represent  the  � th  matching pair of rainfall  amounts  estimated by remote  

sensing products  and observed by gauges, respectively. And �  represents  the  total  number of 

matching pairs. In  (2b), ����"($)  and ����(($)  represent  the  assigned rank value  in the  

ascending order of the  remote  sensing products  and gauge  observations, respectively.  Only data  

pairs  with nonzero values  from  both gauge  and remote  sensing sources  are  considered as  the  four 

indices are focused on quantitative measurement rather than detection.    
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3. Uncertainty of remote sensing QPE products 

Figure 1(a-h) shows maps of total accumulation of AR-driven precipitation estimated by 

satellites and ground radars in January and February of 2017. Gauge data from MRMS (Fig. 1h) 

are used as a reference for total precipitation comparison over land. Corresponding digital 

elevation map is shown in Fig. 1j. Because there is no gauge measurement of precipitation, the 

relative performance of satellite QPE products is not evaluated over ocean. Fig. 1a-f show that 

satellite products are fairly consistent in capturing the precipitation pattern over ocean, except 

large discrepancy to the west of southern British Columbia (Lat: 50°, Long: -130°), where the 

IR-based products (i.e., PERSIANN and CCS) show much lower precipitation than other 

products in this region. IR-based QPE retrieval algorithms are mainly based on the general 

assumption that colder or higher clouds statistically produce more intense rainfall, so they are 

prone to underestimate heavy precipitation from ARs with the bulk of the water vapor flux 

generally below 850 hPa (Rahph et al., 2005). Over land, gauge product shows the highest 

precipitation occurred over Sierra Nevada, likely due to the orographic lifting of precipitation on 

the windward side of the mountains. Among all the eight remote-sensing QPE products, GSMaP 

generates the highest precipitation amount and largest precipitation area over and in the vicinity 

of the Sierra Nevada. CMORPH, purely based on PMW sensors, barely captures precipitation 

over snow and frozen lands, which is in agreement with the study presented in Behrangi et al. 

(2016). 

In capturing the precipitation observed by Gauge, CCS captures the orographic 

precipitation pattern over Sierra Nevada but underestimates the precipitation amount compared 

to gauge measurements. Also, CCS shows the largest precipitation coverage overall. Especially 

in the interior western United States region, CCS presents the highest precipitation among all 
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products including MRMS local gauge bias-corrected radar QPE and gauge QPE products. The 

MRMS Radar Only product shows underestimation compared to gauge measurements. The 

artifact precipitation circles in the precipitation map indicate the radar beam might be too high 

and sampling the mixed-phase precipitation above the freezing level. As expected, Radar-lgc 

product is fairly consistent with gauge-based product since it is calibrated with gauge 

measurements. 

Figure 2 shows the ensemble mean and standard deviation of monthly precipitation 

accumulations calculated from five satellite products, IMERG, GSMaP, PERSIANN, CCS, and 

CMORPH. Consistent with that observed in Figure 1, the ensemble means of monthly 

precipitation (Fig. 2a and 2b) show two precipitation centers, one is over ocean, and the other is 

along the Sierra Nevada. However, compared to the monthly precipitation derived from MRMS 

gauge product (Fig. 2e and 2f), the ensemble mean of space-based products shows severe 

underestimation. Figure 2c and 2d show higher agreement of different products over ocean (low 

standard deviation) but lower agreement over land (high standard deviation), especially in the 

Sierra Nevada region. 

Fig. 3 (a) and (b) present the histograms of precipitation intensity of different products 

over ocean and land, respectively. The precipitation intensity investigated here are all greater 

than zero. Due to the lack of ground-radar and rain gauge over ocean, only precipitation derived 

from satellite observations are available to show the fraction of total precipitation over ocean. 

Fig. 3a shows that the largest fractions of precipitation volume of 3B42RT, CMORPH, CCS, and 

GSMaP are all located around 1 mm hr-1. IMERG has a wider distribution compared to other 

products. GPM Level 3 data, IMERG, has a better detectability of light precipitation, which may 

explain the higher fraction of intensity between 0.01 mm hr-1 to 0.2 mm hr-1. Compared to 
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IMERG, 3B42RT has limitations to observe light precipitation below 0.2 mm hr-1. PERSIANN 

and CCS are both IR-based QPE products, but their histogram curves are different. CCS adopts a 

patch-based approach in which the relation between IR and precipitation rate is established for 

different classes of cloud patch. As a result, the precipitation histogram of CCS is wider than 

PERSIANN, with higher fractions in both very light precipitation (below 0.03 mm hr-1) and 

moderate/heavy precipitation (higher than 1 mm hr-1). Over land, both satellite and radar 

products are shown in Fig. 3b with Gauge as the reference. For a fair comparison, CMORPH is 

excluded in this figure, because it has extremely low detectability over snow and ice surfaces. 

Compared to gauge measurements, 3B42RT, CCS and GSMaP place more fraction of 

precipitation in the high intensity range (greater than 2 mm hr-1), which is consistent with 

previous studies. For example, Behrangi et al (2016) found CCS placed a significant fraction of 

precipitation in the mid-intensity range between 4 and 40 mm day-1 by analyzing 10-yr AR 

landfalling data. Tang et al (2017) found 3B42RT and GSMaP have overestimation of severe 

storm precipitation in the summer 2016 in South China by comparing to merged gauge QPE 

product. Histogram of precipitation intensity measured by ground radar is close to that measured 

by gauge but misses up to 50% of heavy rain with intensity greater than 2 mm hr-1. There are two 

reasons. First, in the relatively flat environment, the radar beams are too high to sample the 

surface rainfall (Wen et al., 2013), causing large errors in surface rainfall estimation because of 

the vertical variations of reflectivity. On the other hand, in the mountainous area, it is 

challenging to find appropriate Z-R relations suitable to the complex rainfall processes including 

bright band rain with robust ice processes and subsequent melting and non-bright band rain 

dominated by collision and coalescence below the melting level resulting from orographic 
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enhancement (Martner et al., 2008). After bias-calibrated by gauges, Radar-lgc shifts some 

extent to the gauge. 

4. Case study perspective 

Because of the important impacts of ARs in California, we chose a research region 

(shown in Fig.1j) focusing on California and look into the event with the heaviest rainfall to 

further investigate the performance of various remote sensing QPE products. The study area, as 

indicated in Figure 1j, is about 300,000 km2, including the mountains and the Central Valley area. 

Figure 4 shows time series of area-averaged precipitation rate over the study area 

measured by gauge. The precipitation was mainly brought by four major AR events significantly 

contributing to the annual water resources in California. The local maximum rainfall intensity 

reached 10.67 mm hr-1 (3-hr average) occurred at 6:00UTC, January 9 based on ground stations. 

Table 2 presents the total volume of precipitation brought by the four AR events to California 

measured by the ground gauges and remote sensors. According to the gauge products, Event 1 

(Jan. 2 to Jan. 13) brings the largest precipitation volume (60 km3) within 12 days, more than the 

monthly average flow of liquid water (45 km3 per month) at the mouth of the Mississippi River 

(Syed et al., 2005). The water transported by the four studied AR events to California ranges 

from 36 km3 to 60 km3, totally ~174 km3 water precipitating in California in January and 

February of 2017. Precipitation estimated from space and ground radar has underestimation or 

overestimation issues compared to that measured by gauges. However, ensemble mean of 

precipitation amount calculated from IMERG, 3B42, PERSIANN, CCS, GSMaP and Radar-only 

shows reasonable performance, covering the gauge measurements within one stand deviation 

(STD) range for all four events. Further investigation of remote sensing capability of capturing 
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extreme precipitation event is conducted on Event 1, the heaviest precipitation case of the four 

events. 

Fig. 5 presents the time series of area-averaged precipitation rate over the study area 

generated from eight remote sensing QPE products along with the gauge data as the reference. 

CMORPH has severe underestimation all the time because of PMW sensors’ limitation over 

snow and frozen surface as discussed in previous sessions. 3B42RT has almost 3-times 

overestimation compared to gauge measurements on the first precipitation peak on January 8. 

Not only the 3B42RT has overestimation issues, but also GSMaP (two-times higher), CCS and 

PERSIANN are all higher than the gauge measurements of the precipitation on January 8. 

However, for the lower precipitation peak occurred on January 11, only GSMaP overestimates 

the precipitation, while other products have underestimation. IMERG generally reports less 

precipitation compared to that measured by gauge. Ground weather radar captures the temporal 

pattern of precipitation, but underestimates the total precipitation amount. Radar-lgc is consistent 

with gauge measurements simply because this product is corrected by quality-controlled gauge 

measurements. 

Figure 6 shows POD, FAR and CSI as a function of 3-hourly precipitation intensity 

measured by gauge from Event 1. The POD generally shows a trend of improving values with 

increasing precipitation intensity for all products. This improvement indicates that remote 

sensing products likely miss the light precipitation. 3B42RT has the lowest POD at all 

precipitation intensities. IMERG and GSMaP show better performance of POD than others. For 

FAR, all products generally show decreasing trends. Note that for the precipitation intensity 

below 0.2 mm hr-1, the high FAR values exhibited by all products are probably related to rain 

gauge sensitivity, which sets to approximately 0.2 mm/tip. Overall, PERERSIANN and CCS 

16 



  

  

    

          

        

       

        

  

            

       

        

      

          

        

        

      

          

          

         

  

       

          

          

         

         

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

Remote Sensing of 2017 California Atmospheric River Precipitation 

have higher FAR than other products for moderate precipitation. For heavy precipitation with 

intensity greater than 5 mm hr-1, FARs of GSMaP and 3B42RT are the largest. IMERG shows 

the best FAR for precipitation intensity > 0.4 mm hr-1 among all satellite products. The CSI 

value gives a comprehensive evaluation of detectability of remote sensing products. The radar-

based products have highest CSIs. The difference between radar-only and radar-lgc is negligible. 

Among all satellite products, IMERG shows the best CSI scores. 

Table 3 presents the metrics calculated based on event scale for Event 1 to assess the 

accuracy of remote sensing products in quantifying precipitation rate. IMERG performs much 

better than other satellite QPE products in terms of CC. The RB of IMERG is down to -45.84%, 

while the CCS, 3B42RT, and PERSIANN are -13.12%, 28.31%, and -28.45%, respectively. 

However, it is worth noting that the MAE of IMERG is lower than CCS, 3B42RT, and 

PERSIANN, suggesting that better RB of these three products maybe resulted from the 

cancellation of positive and negative biases. It should be noted that we also investigated the 

version 3 IMERG (not shown) and it shows anomalously high RB, MAE, and RMSE, likely due 

to an error in the V03 algorithm. It is encouraging that V04 IMERG has resolved the problem 

and appears as one of the best among the other products. The statistical scores of radar-only 

product are slightly better than IMERG. The comparisons of all events are included in Table 4 

and the results are similar to the ones based on Event 1 shown in Table 3. 

The error of remote sensing products compared to gauge on 3-hourly scale is shown in 

Fig. 7. Figure 7 shows the median, the quartile, and the range (10% and 90%) of the error 

distribution based on Event 1 and all the four events. Only data pairs with nonzero values from 

both gauge and remote sensing sources are considered since the boxplots in Fig. 7 is focused on 

quantitative measurement rather than detection. Fig. 7 shows that the performances of all remote 
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sensing products are fairly good in terms of the median value of the error. GSMaP has 

overestimations, while other products show underestimations. Radar product, as the ground 

based active MW sensor, shows the best performance in terms of the median value and the range 

among all remote sensing products as we expect. For satellite products, the medians of 

PERSIANN and CCS are closer to zero than other ones. However, the range of PERSIANN and 

CCS are larger than IMERG. The 3B42RT shows the largest positive error and largest range of 

error. 

The intense rainfall could trigger floods, thus accurate estimation of extreme rainfall is 

always critical for flood monitoring, forecasting, and migrating (Gourley et al. 2017). Figure 8 

shows the error distribution of remote sensing products focusing on heavy precipitation 

observations. The threshold to select heavy precipitation measurements is 3-hour-intensity 

greater than 5 mm hr-1. Compared to Fig. 7, the performances of all products degrade. CMORPH 

has the largest negative error. CCS, PERSIANN, IMERG, and Radar Only have severe 

underestimation as well. The medians of 3B42RT and GSMaP are closer to zero than other 

products, which can be attributed to the severe overestimation in the precipitation peak time 

(indicated in Fig. 5). 

The evaluation metrics of remote sensing QPE products at 3-hourly scale for Event 1 are 

shown in Table 5 and for all the four events are shown in Table 6. However, we want to note that 

the results based on all four events are similar to those for the first event (with largest 

precipitation).For all measurements including precipitation with different intensities (left part of 

the table), Radar-only, GSMaP and IMERG perform better than other products in terms of CC. 

Radar-only and IMERG are better than GSMaP in terms of RB, MAE and RMSE. As a whole, 

the performances of Radar-only and IMERG are the best considering the four metrics used in 
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this study, which is consistent with Fig. 7. However, the performances of all products are 

seriously degraded when statistics applied to heavy precipitation only (right part in Table 5). The 

CC of Radar-Only is 0.24 and the best CCs of satellite products is 0.17 from 3B42RT. The RBs 

of all products are also deteriorated from the whole dataset to heavy precipitation. Table 5 Table 

6 are consistent with Fig. 7 and Fig. 8, indicating that severe limitations exist in remote sensing 

products in extreme heavy precipitation estimation, though the performance is reasonable when 

considering the whole events. 

5. Summary and conclusions 

ARs are critical to the regional climate, hydrology, water resources, and socioeconomics 

in the semiarid western United States. The ARs precipitation events in January and February of 

2017 brought totally 174 km3 of water to California, alleviated drought but also caused floods 

and landslides. Accurate measurement of extreme precipitation associated with ARs is critical 

for flood/landslide forecasting and water resources management. The Western U. S. is fairly well 

instrumented and thus provides a good testbed to assess the performance of the remote sensing 

products under various challenging conditions such as extreme rain and snow events, orographic 

precipitation, and precipitation on frozen surfaces. This study assesses six satellite-based near 

real-time precipitation products (IMERG, 3B42RT, PERSIANN, CCS, CMORPH, and GSMaP) 

and two ground radar-based precipitation products (MRMS Radar-only and Radar-lgc) in 

capturing AR’s precipitation rate and distribution, especially in extreme events. The main results 

are summarized as follows: 

1) The precipitation map from gauge shows more than 1000 mm precipitation occurred 

over and in the Sierra Nevada in two months. All satellite QPE products except GSMaP 

underestimate the heavy precipitation. IMERG, 3B42RT, PERSIANN, and CCS are able to 
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capture the heavy rain pattern over the Sierra Nevada, but underestimate the total precipitation 

amount by -40%, -50%, -60% and -30%, respectively, compared to gauge measurements. In 

terms of the statistical performance over land, IMERG correlates the best with gauge 

observations both in the detection and quantification of precipitation, but it does not yield the 

best RB and RMSE. CMORPH misses the most precipitation over snow and ice surface. 

2) Over ocean, different satellite products show similar precipitation patterns, except in 

the area close to the west of southern British Columbia where the precipitation is captured by 

IMERG, CMORPH, and GSMaP, but missed by IR methods (PERSIANN and CCS). 

3) 3B42RT has the lowest POD at all precipitation intensities. At the same time, 3B42RT 

overestimates precipitation significantly at peak intensity. Both PERSIANN and CCS have false 

alarm issues with precipitation detection. GSMaP has fairly good detectability skill but tends to 

have false alarm issues at heavy precipitation. IMERG shows better performance than others in 

terms of POD and FAR, hence yields the best CSI. The significant improvement of IMERG 

compared to 3B42 is particularly encouraging. 

4) The histograms of precipitation intensity show that the largest fraction of precipitation 

volume of 3B42RT, CMORPH, CCS, and GSMaP are all located around 1 mm hr-1. IMERG has 

a wider distribution due to its better detectability of light precipitation. In the high intensity range 

(greater than 2 mm hr-1), 3B42RT, CCS and GSMaP place more fraction of precipitation 

compared to gauge, while IMERG and PERSIANN have lower fraction. 

5) Compared to satellite products, ground weather radar shows better performance in 

precipitation detection and estimation. However, accurate radar QPE over western U.S. remains 

challenging due to complex precipitation microphysics in this mountainous region. Radar shows 

totally 38% underestimation of rainfall compared to gauge and prone to underestimate the heavy 
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precipitation with intensity greater than 2 mm hr-1. Radar-lgc is consistent with gauge 

measurements because it is bias corrected using gauge measurements. 

6) For extremely heavy precipitation (3-hourly precipitation rate > 5 mm hr-1), none of 

the products show good performance in quantifying the precipitation intensity. 

The insights gained from these analyses can help algorithm developers design more 

robust retrieval methods. Furthermore, it can provide users with a better quantitative 

understanding of the range of uncertainties that the current remote sensing products offer. While 

the outcome of the present study over the Western US may not be directly transferable to many 

other regions of the world, it can provide an overall insight on the range of uncertainties that one 

may expect over similar conditions. 

Further analysis is needed to investigate different phases of AR precipitation. The same 

amount of water with liquid or solid phase would have significantly different impacts on 

hydrological cycle, hazard forecast, and water resources management. In current study, rain 

gauges cannot provide snowfall information. Snow Telemetry (SNOTEL) measures snowfall 

over the western U. S. and thus provides an opportunity to assess remote sensing snowfall 

products (Serreze et al. 1999; Wen et al. 2017). Efforts are underway to investigate the 

liquid/frozen ratio of AR precipitation and assess the performance of commonly used remote 

sensing QPE products in separating solid and liquid precipitations. 
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Table 6.  Similar to Table 5, but the results are based on precipitation f rom all 4 events.   
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 Data  Spatial  Temporal   Data source 

 resolution  resolution 
 IMERG   0.1o×0.1o  0.5-hour ftp://jsimpson.pps.eosdis.nasa.gov  
 3B42RT   0.25o×0.25o  3-hour  https://mirador.gsfc.nasa.gov 

 PERSIANN   0.25o×0.25o  1-hour ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN  
 CCS   0.04o×0.04o  0.5-hour  ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CCS 

 CMORPH   0.25o×0.25o  1-hour  https://rda.ucar.edu/datasets 
 GSMaP   0.1o×0.1o  1-hour  ftp://rainmap@hokusai.eorc.jaxa.jp 
  MRMS Radaronly   0.01o×0.01o  2-minute  http://mrms.ncep.noaa.gov/data 
  MRMS Radar-lgc   0.01o×0.01o  1-hour  http://mrms.ncep.noaa.gov/data 
  MRMS Gauge 

 

  0.01o×0.01o

 
 1-hour  http://mrms.ncep.noaa.gov/data 
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581 Table 1. A summary of QPE products used in this study.
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  Event 1  Event 2  Event 3  Event 4 January  February   Total 
  1/2 - 1/13   1/17 - 1/25   2/2 - 2/13   2/15 - 2/23 

 IMERG  30.60  16.74  27.72  23.03  47.33  50.74  98.08 
 3B42RT  54.99  7.51  30.31  10.50  62.50  40.80  103.31 

 PERSIANN  33.02  13.83  18.94  20.19  46.85  39.13  85.98 
 CCS  46.25  26.26  31.55  32.90  72.51  64.46  136.97 

 CMORPH  8.43  5.91  8.87  9.20  14.34  18.07  32.418 
 GSMaP  69.03  62.88  64.98  65.25  131.91  130.23  262.14 

 Radar-only  37.81  28.15  24.70  28.01  65.96  52.71  118.67 
 Radar-lgc  61.04  36.95  41.27  37.70  97.99  78.98  176.97 

 gauge  60.64  35.58  41.11  36.54  96.22  77.65  173.87 
 Ensemble  44.65  25.98  32.16  29.26  70.62  61.42  132.04 

 * ± ± ± ± ± ± ± ±                
  *Note:  The ensemble mean is  calculated using IMERG,  3B42RT,  PERSIANN,  CCS,  GSMaP  and Radar-only.  
  CMORPH and  Radar-lgc are not included. CMORPH has  missing  data  over  snow and  frozen surfaces.  Radar-lgc is  
  not  independent  of  gauge data.    
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582 Table 2. Total amount of precipitation integrated over California for 4 major AR events in 
3January and February of 2017. The unit is km .  583 

mean STD 19.10 17.87 15.96 16.99 34.51 32.22 66.07 
584
585
586
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587 Table 3. Metrics of remote sensing precipitation products at event scale for Event 1 over study 
588 region. 

Product CC RB (%) MAE RMSE 
IMERG 0.82 -45.84 17.78 25.37 
3B42RT 0.69 28.31 18.93 23.48 
PERSIANN 0.63 -28.45 19.37 26.02 
CCS 0.51 -13.12 17.82 22.96 
CMORPH 0.47 -84.72 31.91 41.45 
GSMaP 0.61 58.43 26.76 34.38 
Radar-only 0.88 -36.15 14.49 20.29 
Radar-lgc 0.98 0.83 3.69 5.57 
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Table 4. Metrics of remote sensing precipitation products for total precipitation in Jan and Feb of 
2017 over study region 
Product CC RB (%) MAE RMSE 
IMERG 0.76 -42.04 62.61 89.92 
3B42RT 0.70 -27.03 63.89 81.24 
PERSIANN 0.68 -41.18 76.08 100.71 
CCS 0.36 -2.81 70.79 86.50 
CMORPH 0.67 -83.14 101.04 132.59 
GSMaP 0.71 84.13 111.28 135.92 
Radar-only 0.91 -26.96 40.20 58.76 
Radar-lgc 0.99 6.02 13.16 20.06 
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 Product  Event 1  Extreme heavy precipitation in Event 1 

 CC   RB (%)  MAE  RMSE  CC   RB (%)  MAE  RMSE 
 IMERG  0.43  -42.72  1.47  2.11  0.08  -55.40  3.98  4.37 
 3B42RT  0.26  65.22  2.75  4.35  0.17  -10.54  3.30  4.07 

 PERSIANN  0.35  -31.30  1.33  1.81  0.09  -55.26  3.46  3.92 
 CCS  0.28  -13.41  1.50  2.08  0.11  -48.94  3.19  3.74 

 CMORPH  0.26  -78.38  1.90  2.51  0.11  -85.92  5.41  5.58 
 GSMaP  0.47  53.50  1.90  2.84  0.01  -12.01  2.82  3.53 

 Radar-only  0.75  -37.73  0.81  1.26  0.24  -52.16  3.25  3.53 
 Radar-lgc  0.93  -0.43  0.32  0.51  0.77  -1.20  0.55  0.74 
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589 Table  5. Metrics of remote sensing precipitation products at 3-hr scale for Event 1 over study 
region. Extreme heavy precipitation measurements are selected under the criteria of 3-hr 
intensity greater than 5 mm hr-1.  
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Table 6. Similar to Table 5, but the results are based on precipitation from all 4 events. 

Product Event 1 Extreme heavy precipitation in Event 1 

CC RB (%) MAE RMSE CC RB (%) MAE RMSE 
IMERG 0.35 -39.93 1.29 1.99 0.12 -57.25 4.46 4.96 
3B42RT 0.28 25.01 1.94 3.17 0.05 -30.93 3.65 4.38 
PERSIANN 0.20 -47.21 1.15 1.67 0.08 -70.30 4.46 4.88 
CCS 0.15 -8.56 1.45 2.19 0.03 -66.24 4.29 4.81 
CMORPH 0.27 -76.05 1.43 2.02 0.16 -84.87 5.42 5.65 
GSMaP 0.39 73.99 1.93 4.04 0.09 -12.22 3.35 4.44 
Radar-only 0.76 -30.48 0.61 1.01 0.22 -54.21 3.44 3.77 
Radar-lgc 0.92 3.05 0.27 0.44 0.76 -1.72 0.61 0.85 
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595 List  of  Figures  

Fig. 1.  January and February accumulation. (a) IMERG, (b) 3B42RT, (c) PERSIANN, (d) CCS, 
(e) CMORPH, (f) GSMaP, (g) Radar only, (h) Radar lgc, (i) Gauge  only, and (j) DEM. 
The red rectangle box in (j) DEM is the research area for case study perspective.  

Fig. 2.  Ensemble Mean and STD of 6 satellite QPE products in January and February.  

Fig. 3.  Histograms  of remote  sensing QPE  products  (a) over ocean;  (b) over land. Histogram  of 
gauge product is also included in (b).  

Fig. 4.  Time series of area-averaged precipitation rate over the study area measured by gauge.  

Fig. 5.  Time  series  of average  precipitation rate  over the  study area  for Event  1 generated by 
remote sensing QPE products.  

Fig. 6.  POD, FAR, and CSI of remote sensing products with gauge as reference.  

Fig. 7.  Error of remote  sensing  products  compared to gauge  (a) for  Event  1  and (b)for all  four 
events.  

Fig. 8.  Similar to Fig. 7, but  focus  on the  heavy rainfall  3-hourly intensity great  than 5 mm  hr-1  
measured by gauge for Event 1 and for all four events.   
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610 
611 Figure  1. January and February accumulation. (a) IMERG, (b) 3B42RT, (c) PERSIANN, (d) 

CCS, (e) CMORPH, (f) GSMaP, (g) Radar-only, (h) Radar-lgc, (i) Gauge  only, and (j) DEM. 
The red rectangle box in (j) DEM is the research area for case study perspective.   
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614 Figure 2. Ensemble Mean and STD of 6 satellite QPE products in January and February.   
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615 Figure 3. Histograms of remote sensing QPE products (a) over ocean; (b) over land. Histogram  
of gauge product is also included in (b).    616 
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617 
618 Figure 4. Time series of area-averaged precipitation rate over the study area measured by gauge.        
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619 
620 Figure 5. Time series of average precipitation rate over the study area for Event 1 generated by   

remote sensing QPE products.    
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622 Figure 6. (a) POD, (b) FAR, and (c) CSI of remote sensing products with gauge as reference. 
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623 
624 Figure 7. Error of remote sensing products compared to gauge for (a) Event 1 and (b) all four  

events.    625 
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627 
628 Figure 8. Similar to Figure 7, but focus on the heavy rainfall 3-hourly intensity great than 5 mm 
629 hr-1 measured by gauge for (a) Event 1 and (b) all four events. 
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